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Abstract

Large language models (LLMs) are increasingly used in educational contexts, yet their
factual knowledge of specific national and sub-national curricula remains largely untested.

We present a curriculum knowledge benchmark that systematically evaluates how
accurately frontier LLMs can recall structured educational content from four Australian and
New Zealand K-10 curriculum frameworks the Australian Curriculum v9, the Victorian
Curriculum, the Western Australian Curriculum, and the New Zealand Curriculum.

Our benchmark comprises 1,700 programmatically generated questions across five
categories, code-to-description mapping, description-to-code lookup, content point recall,
subject-stage metadata recall, and open-ended topical questions, each designed to probe a
different dimension of curriculum knowledge at the Remember level of Bloom’s Revised
Taxonomy.

We evaluate seven baseline LLMs (GPT-4.1-mini, GPT-4.1, GPT-5.2, Gemini 3 Pro, Gemini
3 Flash, Claude Sonnet 4.5, and Claude Haiku 4.5) using only their parametric knowledge,
and compare them against CurricuLLM, a retrieval-augmented generation (RAG) system
purpose-built for curriculum-aligned teacher support.

Responses are evaluated using an automated LLM-as-Judge pipeline (Gemini Flash 3) with
category-specific rubrics, deterministic fast-path checks, and a human validation sweep
confirming approximately 80% judge accuracy.

Across approximately 13,500 question-response pairs spanning four curricula, we find that
no baseline LLM exceeds 41% overall accuracy, with code-specific knowledge
(code-to-description, content recall) near zero for most models, while open-ended topical
questions approach 80%.

CurricuLLM achieves 89% overall, outperforming the best baseline by 48 percentage points,
with its largest advantages on precisely the structured curriculum queries most relevant to
teacher workflows.

Cross-curriculum analysis reveals that all models perform best on the New Zealand
Curriculum (which lacks outcome codes) and worst on the Victorian Curriculum, suggesting
performance correlates with question specificity and training data prevalence.

We situate this work within Bloom’s Taxonomy and argue that curriculum recall represents a
necessary but insufficient condition for effective Al-assisted teaching. We outline a research
agenda for future benchmarks targeting higher-order cognitive skills, comprehension,
application, analysis, and evaluation, to more fully assess the pedagogical utility of LLMs.

Keywords: large language models, curriculum alignment, educational benchmarking,
retrieval-augmented generation, Bloom’s Taxonomy, K-10 education, Australian Curriculum,
New Zealand Curriculum



1. Introduction

The rapid integration of large language models into educational workflows has created an
urgent need to understand what these models know about the curricula that structure K-10
teaching and learning. Teachers across Australia and New Zealand increasingly turn to Al
assistants for lesson planning, resource creation, and curriculum mapping [19, 24, 25], yet
the factual accuracy of these tools with respect to specific national and state curriculum
frameworks has not been systematically evaluated.

Existing LLM benchmarks in education primarily test general academic knowledge through
standardised tests drawn from United States contexts. MMLU [1] spans 57 academic
subjects but at a tertiary level with no curriculum-specific metadata. The ARC dataset [2]
uses US grade-school science questions. AGIEval [4] draws on standardised exams from
multiple countries but focuses on examination performance rather than curriculum structure.
None of these benchmarks test whether an LLM can identify the codes, subjects, year
levels, content points, or strands associated with learning outcomes in a particular
jurisdiction’s curriculum, the kind of structured knowledge that curriculum-aligned Al tools
must possess.

This gap matters for several reasons. First, Australia and New Zealand employ distinct,
overlapping curriculum frameworks. The Australian Curriculum v9 provides a national
framework, but states such as Victoria and Western Australia maintain their own curriculum
documents with jurisdiction-specific codes, strands, and content elaborations. New
Zealand'’s curriculum differs further in structure, terminology, and pedagogical philosophy. An
Al tool that conflates these frameworks, or that hallucinates plausible-sounding but incorrect
curriculum content, could mislead teachers and undermine trust in Al-assisted planning.

Second, the distinction between parametric knowledge (what an LLM has memorised from
its training data) and retrieval-augmented knowledge (what an LLM can access through
external retrieval at inference time) is critical for curriculum applications. Australian and New
Zealand curricula likely constitute long-tail knowledge relative to the predominantly
English-language web corpora on which frontier LLMs are trained [32]. Retrieval-augmented
generation (RAG) systems [11] offer a promising approach to grounding LLM responses in
authoritative curriculum data, but the magnitude of improvement over parametric knowledge
alone has not been quantified for this domain.

This challenge is compounded by the fact that all curricula under test are currently
undergoing multi-year revision processes. The Australian Curriculum transitioned from
Version 8 to Version 9 beginning in 2022, with state and territory adoption timelines varying.
New Zealand is refreshing its curriculum through the Te Mataiaho framework. As a result,
LLMs whose training data includes earlier curriculum versions may produce answers that
were once correct but are now outdated, and parametric knowledge of superseded content
may actually reduce accuracy rather than improve it on questions about current curricula.

Third, while curriculum recall, the ability to accurately reproduce factual information about
curriculum content, is a necessary foundation, it represents only the lowest level of Bloom’s
Revised Taxonomy [16, 17]. Effective Al teaching assistants must also demonstrate
comprehension (explaining why a content descriptor is taught at a particular year level),
application (generating assessment tasks aligned to specific outcomes), analysis (identifying
cross-curricular connections), and evaluation (critiquing a lesson plan for curriculum



alignment). Understanding baseline recall performance is a prerequisite for designing
benchmarks that test these higher-order capabilities.

In this paper, we make the following contributions:

1. We present a curriculum knowledge benchmark comprising approximately 1,700
questions (after data curation) across five categories, generated from structured
curriculum databases covering four Australian and New Zealand K-10 frameworks.

2. We evaluate seven frontier LLMs and one RAG system (CurricuLLM), providing the
first systematic comparison of parametric versus retrieval-augmented curriculum
knowledge.

3. We describe a robust automated evaluation pipeline combining an LLM-as-Judge
approach with deterministic fast-path optimisations, category-specific rubrics, and
human validation.

4. We situate our benchmark within Bloom’s Revised Taxonomy and propose a
research agenda for evaluating higher-order curriculum reasoning capabilities.

2. Related Work

2.1 LLM Evaluation in Education

The evaluation of LLMs on educational tasks has evolved rapidly. The Massive Multitask
Language Understanding (MMLU) benchmark [1] established the paradigm of testing LLMs
across dozens of academic subjects, revealing that model scale correlates with multitask
accuracy. The Al2 Reasoning Challenge (ARC) [2] specifically targeted grade-school
science, while SciQ [3] demonstrated crowdsourced question generation for science
education. AGIEval [4] expanded evaluation to real standardised exams including college
entrance tests, finding GPT-4 achieved 95% on SAT Math. The GPT-4 Technical Report [5]
further demonstrated near-human performance on professional and academic examinations
across diverse domains.

More recently, Rodrigues et al. [6] evaluated GPT-4 on 7,380 open-ended high-school
questions categorised by Bloom’s Taxonomy level and Item Response Theory difficulty,
finding performance comparable to native-speaking students. The OpenLearnLM benchmark
[30] introduced a unified framework of over 124,000 items for evaluating educational LLMs
across knowledge, skill, and attitude dimensions. Leliévre et al. [31] benchmarked
pedagogical knowledge specifically, testing 97 models on 920 multiple-choice questions
drawn from teacher training examinations. Henkel et al. [29] examined LLMs’ ability to grade
K-12 student responses in Science and History, finding GPT-4 achieved near-human
inter-rater reliability.

However, all of these benchmarks test general academic knowledge or pedagogical
reasoning. None evaluate whether LLMs can accurately recall the specific structure, codes,
content descriptors, and organisational metadata of national or sub-national curriculum
frameworks, the kind of domain-specific knowledge required for curriculum-aligned Al tools.

2.2 LLM-as-Judge Methodology

The use of LLMs as automated evaluators has been validated extensively. Zheng et al. [7]
introduced the LLM-as-Judge framework with MT-Bench and Chatbot Arena, demonstrating



that GPT-4 achieves over 80% agreement with human evaluators, matching inter-annotator
agreement rates. Liu et al. [8] proposed G-Eval, using chain-of-thought prompting for
evaluation, achieving state-of-the-art correlation with human judgments. Wang et al. [9]
identified systematic position bias in LLM evaluation and proposed calibration strategies. Li
et al. [10] provide a survey of the LLM-as-Judge paradigm, covering scoring methods,
biases, and mitigation strategies.

Our benchmark adopts the LLM-as-Judge approach using Gemini Flash 3 as the evaluator,
with several mitigations for known biases: we use category-specific rubrics to reduce
subjectivity, implement deterministic fast-path checks that resolve unambiguous cases
without invoking the judge, and conduct a human validation sweep that confirmed
approximately 80% judge accuracy. We note that Gemini Flash 3 also serves as one of the
models under test; this dual role and its implications are discussed in Section 5.6.

2.3 Retrieval-Augmented Generation in Education

Retrieval-augmented generation (RAG), introduced by Lewis et al. [11], combines parametric
language model knowledge with non-parametric retrieval from external knowledge bases.
The paradigm has been widely adopted in education. Li et al. [12] provide a survey of RAG
in educational applications, categorising uses across interactive learning systems, content
generation, and institutional deployment. Dong [13] demonstrated that knowledge
graph-enhanced RAG (KG-RAG) improved assessment scores by 35% in an Al tutoring
context, highlighting the value of structured knowledge representation. Han et al. [14]
showed that RAG-based approaches outperformed zero-shot and chain-of-thought
strategies for automated assessment of tutoring practices.

CurricuLLM, the RAG system evaluated in this benchmark, is a production Al assistant
purpose-built for Australian and New Zealand teachers. It leverages retrieval augmentation
over structured curriculum data to ground its responses in authoritative curriculum content,
providing an end-to-end comparison point against baseline LLMs operating solely from
parametric knowledge.

2.4 Parametric vs. Retrieval-Augmented Knowledge

The distinction between what LLMs know from training (parametric knowledge) and what
they can access through retrieval (non-parametric knowledge) is central to our benchmark
design. Mallen et al. [32] demonstrated that LLMs struggle with less popular factual
knowledge while retrieval augmentation provides the greatest benefit for long-tail topics. This
finding is directly relevant: Australian and New Zealand curricula are likely underrepresented
in LLM training corpora relative to US and UK educational content.

Xie et al. [33] conducted a study of LLM behaviour under knowledge conflicts between
parametric memory and external evidence, finding that models exhibit confirmation bias
when evidence partially aligns with existing knowledge. Xu et al. [34] surveyed three types of
knowledge conflicts, context-memory, inter-context, and intra-memory, providing a
framework for understanding how retrieval-augmented systems handle curriculum content
that may differ from what the model learned during training. Longpre et al. [35] established
foundational methods for studying entity-based knowledge conflicts in question answering.



2.5 Bloom’s Taxonomy and LLM Evaluation

Bloom’s Taxonomy [15], revised by Anderson and Krathwohl [16, 17], provides a six-level
cognitive hierarchy: Remember, Understand, Apply, Analyse, Evaluate, and Create. This
framework has been increasingly applied to LLM evaluation. Huber and Niklaus [18] mapped
existing LLM benchmarks to Bloom’s levels and found that current evaluation is heavily
biased toward lower-order cognitive skills, with higher levels (Evaluate, Create) significantly
underrepresented. This finding directly motivates both our current benchmark, which
explicitly targets the Remember level, and our proposed future work on higher-order
curriculum reasoning.

Kasneci et al. [19] discussed the opportunities and challenges of LLMs in education from
both student and teacher perspectives, including the limitation that current LLMs may lack
higher-order reasoning capabilities necessary for effective pedagogical support.

2.6 Al in Australian and New Zealand Education

The Australian Curriculum v9 [20], endorsed in 2022, provides the national K-10 framework
against which state curricula are aligned. The Australian Government’s Framework for
Generative Al in Schools [21], released in 2023, established six guiding principles for
responsible Al use in K-12 education, signalling institutional commitment to Al integration.
The New Zealand Curriculum [22] and accompanying Ministry of Education guidance on
generative Al [23] provide the policy context for NZ-specific evaluation.

Empirical evidence of Al adoption in these jurisdictions is emerging. Coblenz et al. [24] found
that 69% of New Zealand primary school teachers use Al weekly for lesson planning and
assessment. Bower et al. [25] examined priorities identified by senior Australian education
policy makers regarding generative Al, finding that risk management, teacher education, and
system leadership were paramount concerns. These findings underscore the urgency of
evaluating Al tools’ curriculum knowledge, teachers are already relying on LLMs for
curriculum-related tasks, yet no benchmark exists to assess whether these tools provide
accurate curriculum information.

2.7 Curriculum-Aligned Al Tools

Several recent works address the challenge of aligning LLM outputs with educational
standards. Imperial et al. [26] introduced a retrieval-based framework that improved standard
alignment accuracy by 45-100% when guiding LLMs to generate content aligned with
Common European Framework of Reference for Languages and Common Core standards.
Liu et al. [27] incorporated curriculum components grounded in the Next Generation Science
Standards to generate grade-appropriate educational content. These works demonstrate
growing interest in curriculum-Al alignment but focus primarily on content generation rather
than knowledge evaluation.

2.8 Benchmark Design

Best practices for LLM benchmark design have been formalised in several works. Liang et
al. [36] established the HELM methodology for holistic evaluation, introducing taxonomic
approaches covering accuracy, calibration, robustness, fairness, and efficiency. The problem
of benchmark data contamination, where LLM training data includes benchmark questions,
has been extensively studied by Xu et al. [37] and Deng et al. [38], the latter finding that



GPT-4 could guess missing MMLU options at 57% exact match rate. White et al. [39]
proposed LiveBench, using frequently updated questions to resist contamination. Chang et
al. [40] provide a survey of LLM evaluation methodology, covering task design, metrics, and
evaluation protocols. These works inform our benchmark design decisions, particularly
regarding question generation, evaluation methodology, and threats to validity.

3. Methodology

This section describes our benchmark design, including the curricula under test, models
evaluated, question generation pipeline, and evaluation methodology.

3.1 Overview

Our benchmark follows a three-phase pipeline: (1) structured questions are
programmatically generated from curriculum content databases, supplemented by
LLM-generated open-ended questions; (2) each question is sent to every model under test
via API; and (3) responses are evaluated against ground truth answers, returning a binary
PASS/FAIL verdict. Where possible, evaluation uses deterministic matching, including exact
code matching, year-band matching, and language subject matching, bypassing the LLM
judge entirely. For cases that cannot be resolved deterministically, an independent LLM
judge (Gemini Flash 3) evaluates the response with category-specific rubrics. A human
validation sweep of a random sample confirmed approximately 80% judge accuracy.

3.2 Curricula Under Test

The benchmark covers four curriculum frameworks spanning national and state jurisdictions
across Australia and New Zealand:

T T T

Australian Curriculum v9 aus-v9 Australia (National)
Victorian Curriculum vic Victoria, Australia
Western Australian Curriculum | wa Western Australia
New Zealand Curriculum nz New Zealand

It is important to note that all four curricula are currently undergoing multi-year revision
processes. The Australian Curriculum transitioned from Version 8 to Version 9 (endorsed
2022), with state adoption occurring on varying timelines. New Zealand is developing its Te
Mataiaho curriculum refresh. This means that LLMs trained on web data from different time
periods may have internalised different, and potentially conflicting, versions of curriculum
content. Our benchmark uses the current (2026) state of each curriculum as ground truth,
meaning models with outdated training data may be penalised for answers that were correct
under previous versions.

3.3 Models Under Test

We evaluate models in two categories. Baseline LLMs are tested via their native APIs with
only parametric knowledge, no retrieval augmentation or curriculum-specific context.



CurricuLLM is tested as a complete system through its production API, reflecting its full
capabilities including retrieval augmentation over curriculum data.

‘ Model ID Model Name Category

gpt-4.1-mini GPT-4.1-mini OpenAl Baseline + Judge
gpt-4.1 GPT-4.1 OpenAl Baseline
gpt-5.2 GPT-5.2 OpenAl Baseline
gemini-3-pro Gemini 3 Pro Google (Vertex Al) Baseline
gemini-3-flash Gemini 3 Flash Google (Vertex Al) Baseline
sonnet-4.5 Claude Sonnet 4.5 Anthropic Baseline
haiku-4.5 Claude Haiku 4.5 Anthropic Baseline
CurricuLLM CurricuLLM CurricuLLM RAG-augmented

Baseline models receive a minimal system prompt: “You are a helpful assistant for teachers
using the [Curriculum Name]. Answer questions about curriculum content accurately and
concisely.” This tells the model which curriculum is being tested without providing any
curriculum content, ensuring the benchmark measures parametric knowledge only. All
models (baseline and judge) are run at temperature 1.0.

CurricuLLM is tested end-to-end through its production API: for each question, a new
conversation is created and the question is sent as a user message, with the full response
collected. This ensures results reflect the system’s real-world capabilities as experienced by
teachers, rather than any isolated component.

3.4 Question Generation

Questions are generated across five categories, each testing a different dimension of
curriculum knowledge. Four categories are generated programmatically from structured
curriculum data; one is generated by an LLM with curriculum context.

3.4.1 Question Categories

Code-to-Description (code_to_description). Given an outcome code (e.g., ACOM3A01),
the model must produce the corresponding outcome description. This tests precise recall of
curriculum code-description mappings.

Description-to-Code (description_to_code). Given an outcome description, the model
must produce the corresponding code. This tests reverse lookup capability and is evaluated
by checking for the presence of an acceptable code in the response.

Content Recall (content_recall). Given an outcome code, the model must name a content
point or elaboration associated with that outcome. This tests depth of knowledge beyond the
top-level description.

Subject-Stage Recall (subject_stage_recall). This category tests curriculum organisational
knowledge through three sub-types: identifying the subject or year level for a given code;
naming an outcome in a specified subject at a specified year level; or describing content
taught in a subject-year combination.



Vague/Topical (vague_topical). Open-ended, teacher-style questions generated by Gemini
3 Pro, such as “Name one outcome that teaches fractions” or “Which subject covers
persuasive writing?”

3.4.2 Question Distribution and Sampling

The target is approximately 500 questions per curriculum, though the actual count varies
depending on the categories available for each framework. The distribution across
categories is adaptive: curricula with both outcome codes and content points distribute
questions evenly across all five categories; curricula lacking codes or content points exclude
those categories entirely rather than redistributing quotas. For example, the New Zealand
Curriculum, which does not have outcome codes, generates only subject-stage recall and
vague/topical questions, resulting in a smaller overall question set. Following automated
generation, a human review removes questions deemed too vague or unanswerable, further
reducing the final count.

3.4.3 Answer Expansion and Post-Processing

To reduce false negatives during evaluation, acceptable answer lists are expanded through
several mechanisms. Cross-subject similarity matching using Jaccard similarity (= 0.7 on
word sets) identifies templated outcomes that share descriptions across language subjects
(e.g., French, Japanese, Italian) but have different codes. Same-subject, all-stages
expansion captures topics that recur across year levels. Content recall answers are
augmented with 3-5 LLM-generated paraphrases (Gemini Flash 3). Vague/topical answers
are expanded through a curriculum-wide scan using code-based expansion, topic keyword
search, and stage/year sweeps.

3.5 Model Execution

Baseline models receive questions as independent requests (no conversational history) via
their native APIs. CurricuLLM is tested through its production API with each question sent as
a new conversation, ensuring realistic end-to-end conditions.

3.6 Evaluation

Each response is evaluated by Gemini Flash 3 acting as an independent judge. The judge
receives the question text, category, expected answer, additional acceptable answers, the
model’s response, and a curriculum database lookup section when applicable. We note that
Gemini Flash 3 is both judge and one of the models under test; implications of this dual role
are discussed in Section 5.6. A human validation sweep of a random sample of judge
verdicts confirmed approximately 80% accuracy, consistent with expected LLM-as-judge
reliability for factual knowledge evaluation tasks.

3.6.1 Category-Specific Evaluation Criteria

The judge applies different standards by category. Code-to-description questions require
semantic equivalence; paraphrasing is acceptable if core meaning matches.
Description-to-code questions accept any code whose looked-up description is semantically
equivalent to the question. Content recall accepts any valid content point with paraphrasing.
Subject-stage recall requires exact match for metadata queries but accepts any valid
outcome for naming tasks, with year-band and language subject matching accommodations.
Vague/topical questions apply the most lenient criteria: any response demonstrating



genuine, accurate curriculum knowledge passes, even if not in the provided acceptable
answer list.

3.6.2 Fast-Path Optimisations

Five deterministic fast-paths bypass the LLM judge for efficiency: empty responses are
automatically removed from the test; acceptable code matches in the response trigger
automatic pass; year-band matching resolves stage questions; stage matching handles
topical temporal questions; and language subject matching accommodates the Languages
learning area hierarchy. A code lookup augmentation step extracts outcome-code-like strings
from responses and verifies them against the curriculum database, providing the judge with
concrete evidence for alternative codes.

3.7 Human Validation

Following automated evaluation, a human validation sweep was conducted to calibrate
confidence in the LLM judge’s verdicts. A random sample of judge verdicts was
independently reviewed by a human assessor, who re-evaluated sampled responses against
the ground truth answers and compared their verdicts with the automated judge’s decisions.
Results aligned with approximately 80% accuracy, consistent with expected LLM-as-judge
reliability for factual knowledge evaluation tasks. This human validation serves as a
calibration check confirming the automated evaluation produces results within acceptable
bounds, rather than a full re-evaluation of all responses.

4. Results

We present results from the complete benchmark across all four curricula: Australian
Curriculum v9 (500 questions), Victorian Curriculum (500), Western Australian Curriculum
(500, no content recall category), and New Zealand Curriculum (300, subject-stage recall
and vague/topical only). After data curation, excluding connection errors, the final dataset
comprises approximately 1,690 evaluated question-response pairs per baseline model and
1,589 for CurricuLLM. Throughout this section, we refer to the seven models tested without
retrieval augmentation as “baseline LLMs” and to CurricuLLM as the “RAG system.”

4.1 Overall Pass Rates

Table 1 reports overall pass rates for all eight models across all curricula combined.

CurricuLLM RAG system 1,409 1,589 88.7%
Gemini 3 Pro Baseline 693 1,690 41.0%
Gemini 3 Flash Baseline 645 1,691 38.1%
GPT-5.2 Baseline 613 1,691 36.3%
GPT-4.1 Baseline 582 1,691 34.4%
Sonnet 4.5 Baseline 554 1,688 32.8%
GPT-4.1-mini Baseline 454 1,691 26.8%

Haiku 4.5 Baseline 418 1,690 24.7%
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CurricuLLM achieved an overall pass rate of 88.7%, outperforming the best baseline LLM
(Gemini 3 Pro, 41.0%) by 47.7 percentage points. Among baseline models, Gemini 3 Pro led
(41.0%), followed closely by Gemini 3 Flash (38.1%) and GPT-5.2 (36.3%). A middle tier
comprised GPT-4.1 (34.4%) and Sonnet 4.5 (32.8%), with the smaller models GPT-4.1-mini
(26.8%) and Haiku 4.5 (24.7%) trailing. No baseline model exceeded 41% overall pass rate,
indicating that curriculum-specific factual knowledge is sparse in the parametric memory of
all frontier LLMs tested.

Overall Pass Rate by Model — All Curricula Combined

88.7%

CurricuLLM

41.0%

Gemini 3 Pro

38.1%

Gemini 3 Flash

GPT-5.2 36.3%

GPT-4.1 34.4%

Sonnet 4.5 32.8%

GPT-4.1-mini 26.8%

Haiku 4.5 24.7%
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Figure 1. Overall pass rates by model across all four curricula combined.

4.2 Performance by Question Category

Table 2 disaggregates pass rates by question category across all curricula, revealing stark
differences in performance across the five dimensions of curriculum knowledge tested.

CurrlcuLLM 82.5% 73.2% 88.8% 90.9% 98. 4%
Gemini 3 Pro 6.0% 16.5% 33.5% 45.3% 80.4%
Gemini 3 Flash 4.7% 12.5% 35.7% 38.2% 77.3%
GPT-5.2 8.5% 3.5% 27.7% 42.0% 73.5%
GPT-4.1 4.4% 6.0% 29.8% 35.4% 73.0%
Sonnet 4.5 0.0% 4.0% 28.3% 34.9% 72.3%
GPT-4.1-mini 0.9% 1.5% 23.7% 19.3% 68.3%
Haiku 4.5 0.0% 1.0% 24.4% 13.2% 66.4%

The category-level results reveal a dramatic gradient of difficulty for baseline LLMs.
Code-to-description and content recall proved essentially impossible for most baselines: two
models scored 0.0% on code-to-description, and the highest baseline achieved just 8.5%
(GPT-5.2). Content recall showed a similar pattern, with most baselines below 7%. These
results indicate that baseline LLMs have not memorised the mapping between curriculum
outcome codes and their descriptions to any meaningful degree.

Description-to-code performance was notably higher (23.7-35.7% across baselines) than
code-to-description (0.0-8.5%). Subject-stage recall showed moderate performance
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(13.2-45.3% across baselines), suggesting LLMs have partial knowledge of curriculum
organisation.

Vague/topical questions showed the highest baseline performance (66.4-80.4%), with
Gemini 3 Pro achieving 80.4%. This demonstrates that LLMs retain reasonable conceptual
knowledge of what topics are taught at various year levels, even when they cannot recall
specific codes or content descriptors. CurricuLLM achieved 98.4% on vague/topical
questions, substantially exceeding all baselines. Across all curricula, the gradient from 3.5%
(code-to-description baseline average) to 73.0% (vague/topical baseline average) confirms
that curriculum recall is a spectrum: models know the broad shape of curriculum content but
lack the precise details.

Pass Rate by Question Category — All Curricula

98%
91%
82%
80% -
73%
60% -
40% -
N I
0% - — . : : :

Code—Desc Content Desc—Code Subject/ Vague/
Recall Stage Topical

= CurricuLLM (RAG)
100% - wmm Gemini 3 Pro (best baseline)

Baseline average 89%

Figure 2. Pass rates by question category: CurricuLLM (RAG) vs. best baseline (Gemini 3 Pro) vs.
baseline average, all curricula combined.

Pass Rate Heatmap — Model x Category (All Curricula)
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Figure 3. Pass rate heatmap across all models and question categories. The red-to-green gradient
reveals the sharp contrast between code-dependent categories (near-zero for baselines) and
open-ended categories.

4.3 CurricuLLM vs. Baseline LLMs

CurricuLLM’s retrieval augmentation produced its largest advantages on the
code-dependent categories: +76.5 percentage points over the best baseline on

12



code-to-description (82.5% vs. 6.0%), +56.7 on content recall (73.2% vs. 16.5%), and +53.1
on description-to-code (88.8% vs. 35.7%). The advantage narrowed on subject-stage recall
(+45.6 pp) but remained substantial even on vague/topical questions (+18.0 pp: 98.4% vs.
80.4%).

The 98.4% pass rate on vague/topical questions is particularly notable: CurricuLLM’s
retrieval pipeline appears to provide highly effective grounding for open-ended teacher
queries, anchoring responses to specific curriculum content while still covering the breadth
of valid answers.

4.4 Model Size and Performance

We classify baseline models into two tiers based on each provider's product positioning:
small models (Gemini 3 Flash, GPT-4.1-mini, Haiku 4.5) represent each provider's lighter,
cost-optimised offering, while large models (Gemini 3 Pro, GPT-4.1, GPT-5.2, Sonnet 4.5)
represent the flagship or full-capability tier. Exact parameter counts are not published, so this
classification reflects market positioning rather than architectural detail.

Within each family, the expected size gradient held: Gemini 3 Pro (41.0%) outperformed
Gemini 3 Flash (38.1%), GPT-5.2 (36.3%) and GPT-4.1 (34.4%) both outperformed
GPT-4.1-mini (26.8%), and Sonnet 4.5 (32.8%) outperformed Haiku 4.5 (24.7%). However,
the cross-family variation was substantially larger than the within-family gradient. Most
notably, the small-tier Gemini 3 Flash (38.1%) outperformed three of the four large-tier
models, GPT-4.1 (34.4%), GPT-5.2 (36.3%), and Sonnet 4.5 (32.8%). This suggests that
model family, likely reflecting differences in training data composition and curation, is a
stronger predictor of curriculum recall than model size class.

Model Size Class vs. Curriculum Recall Accuracy

90% - CurriculLLM (RAG): 88.7%
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Figure 4. Model tier versus curriculum recall accuracy. Gemini models outperform larger models from
other families, suggesting training data composition matters more than scale for domain-specific
recall. CurricuLLM reference line (dashed) shows the ceiling enabled by retrieval augmentation.
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4.5 Cross-Curriculum Analysis

Performance varied substantially across curricula. All models performed best on the New
Zealand Curriculum (baseline range: 43.2-66.3%, CurricuLLM: 98.4%) and worst on the
Victorian Curriculum (baseline range: 14.8-31.8%, CurricuLLM: 88.3%). The Australian
Curriculum v9 (17.4-36.8%) and Western Australian Curriculum (33.1-44.9%) fell in between.

The New Zealand Curriculum’s higher pass rates are explained by its question composition:
NZ lacks outcome codes, so only subject-stage recall and vague/topical questions are
tested, the two easiest categories for all models. This structural difference means NZ results
are not directly comparable to the three Australian curricula. Among the Australian curricula,
the Victorian Curriculum was consistently the hardest for baselines, possibly reflecting less
web presence for Victorian-specific curriculum documents compared to the national
Australian Curriculum.

The Western Australian Curriculum showed higher baseline pass rates than the Australian
Curriculum v9 or Victorian Curriculum across most models. This is partly structural, WA lacks
content recall questions (one of the hardest categories for baselines), so its overall rate is
computed across four categories rather than five. However, WA also showed genuinely
higher baseline performance on description-to-code questions, every baseline model scored
above 60% on WA description-to-code, compared to under 22% for the same category on
the Australian Curriculum v9. This suggests that WA's SCSA-style outcome codes are better
represented in LLM training data than v9 codes, possibly because WA curriculum documents
have been publicly accessible online for longer.

= CurricullM . GPT-4.1
100% - ™= Gemini 3 Pro mm Sonnet 4.5

mmm Gemini 3 Flash ~ wmm GPT-4.1-mi
-

Pass Rate by Curriculum — All Models
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Figure 5. Pass rates by curriculum for all models. New Zealand’s higher scores reflect its simpler
question composition (no code-based categories). The Victorian Curriculum is consistently the
hardest for baseline models.
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5. Discussion

5.1 Parametric Knowledge of Regional Curricula

The results strongly support the hypothesis that Australian and New Zealand curriculum
content constitutes long-tail knowledge for frontier LLMs [32]. The best baseline model
achieved only 41.0% overall pass rate, and on the most demanding categories
(code-to-description, content recall) baselines peaked at just 8.5% and 16.5% respectively.
This stands in sharp contrast to the performance of the same model families on US-centric
educational benchmarks: GPT-4 achieves 95% on SAT Math [4, 5], yet GPT-5.2 achieves
just 36.3% on curriculum recall. The knowledge deficit is not one of general educational
competence but of domain-specific factual content.

The cross-family comparison is illuminating. Gemini 3 Pro led all baselines (41.0%), followed
by Gemini 3 Flash (38.1%). The Gemini advantage was concentrated in the subject-stage
recall and vague/topical categories, suggesting Google’s training data pipeline may include
greater representation of Australian educational content, perhaps through indexing of
Australian government and education authority websites, though this remains speculative.

5.2 Refusal vs. Confabulation in Baseline Models

A distinctive failure pattern emerged from the two Anthropic models. Haiku 4.5 contained
explicit refusal language, typically "I don't have access to a specific database of Australian
Curriculum outcome codes", in 49.2% of all questions, while Sonnet 4.5 did so in 23.1%. By
contrast, OpenAl and Google models produced zero, instead always attempting an answer
regardless of confidence. The refusal rate was most pronounced on code-to-description
questions, where Haiku 4.5 refused 96.2% of the time and Sonnet 4.5 refused 95.3%, both
models correctly recognising that they lacked the specific knowledge being tested. This
creates an important interpretive distinction: Anthropic models' lower pass rates partly reflect
a choice to decline rather than guess, while GPT and Gemini models' failures are almost
entirely confident but incorrect responses. From a teacher's perspective, a model that says "I
don't know, check the ACARA website" is arguably less harmful than one that confidently
provides the wrong curriculum code. This pattern may reflect Anthropic's approach to model
calibration, where models are trained to express uncertainty rather than confabulate, though
it significantly penalises them under a binary PASS/FAIL evaluation scheme.

5.3 The Value of Retrieval Augmentation

CurricuLLM’s 47.7-percentage-point advantage over the best baseline decisively
demonstrates the value of retrieval augmentation for curriculum-specific applications. The
advantage was most dramatic on precisely the categories that matter most for teacher-facing
tools: code-to-description (+76.5 pp) and description-to-code (+53.1 pp) are the operations
teachers perform when mapping resources to curriculum outcomes or building
scope-and-sequence documents.

CurricuLLM’s 98.4% pass rate on vague/topical questions, exceeding all baselines by at
least 18 percentage points, demonstrates that retrieval augmentation can enhance even
open-ended queries by grounding responses in authoritative curriculum content. This aligns
with the knowledge conflict literature [33, 34]: when retrieval provides high-quality, relevant
evidence, it resolves rather than exacerbates uncertainty. CurricuLLM’s 88.7% overall



accuracy across nearly 1,600 questions indicates that retrieval augmentation provides
robust, scalable access to curriculum knowledge that is fundamentally absent from
parametric memory.

5.4 Baseline Configuration and Web-Augmented Models

Our benchmark evaluates baseline LLMs using only their parametric knowledge, that is, the
knowledge encoded in model weights during training, without access to external tools or
information sources. In practice, many consumer-facing deployments of these models now
include web search integration, allowing the model to retrieve and cite external sources in
real time. We did not test web-augmented configurations, and it is plausible that models with
search enabled would perform better on curriculum recall tasks, particularly for questions
about publicly accessible curriculum documents.

However, web search augmentation introduces its own risks during periods of curriculum
transition. All four curricula tested in this benchmark are currently undergoing multi-year
revision processes, meaning that web sources may contain a mixture of current and
superseded content, often without clear version labelling. A web-augmented model that
retrieves and confidently cites an outdated curriculum document may be more harmful than
one that simply declines to answer, as the response carries the authority of a cited source
while delivering incorrect information. This is precisely the failure mode that purpose-built
retrieval systems like CurricuLLM are designed to avoid: by grounding retrieval in a curated,
version-controlled curriculum database rather than the open web, the risk of temporal
contamination is substantially reduced.

5.5 Situating Curriculum Recall in Bloom’s Taxonomy

Our benchmark explicitly targets the Remember level of Bloom’s Revised Taxonomy [16],
the lowest cognitive level, involving recognition and recall of specific facts, terminology, and
structural details. This is a deliberate design choice: recall of factual curriculum content is a
necessary precondition for higher-order tasks but is far from sufficient for effective
Al-assisted teaching.

Huber and Niklaus [18] demonstrated that existing LLM benchmarks are heavily skewed
toward lower-order cognitive skills. Our work contributes to this body of evidence by
providing a granular evaluation of recall performance on a specific, practically important
domain. However, we emphasise that high recall accuracy does not imply that a model can
competently perform curriculum-related tasks that require higher-order thinking.

The gap between recall and pedagogical utility can be illustrated concretely. A model that
correctly identifies AC9M3A01 as a Year 3 Number and Algebra outcome (Remember) may
still be unable to explain why this concept is taught at Year 3 rather than Year 2
(Understand), generate an appropriate assessment task for this outcome (Apply), identify
connections between this outcome and related Science outcomes (Analyse), judge whether
a given lesson plan adequately addresses this outcome (Evaluate), or design a differentiated
learning sequence that builds toward this outcome across terms (Create).



5.6 Limitations

Several limitations should be noted. First, our evaluation uses Gemini Flash 3 as the
automated judge, which is also one of the models under test. While human validation
confirmed approximately 80% judge accuracy and the deterministic fast-path checks resolve
the majority of unambiguous cases without invoking the judge, this dual role may introduce
subtle biases in borderline evaluations of Gemini 3 Flash’s own responses. The 80% judge
accuracy rate, while consistent with expected LLM-as-judge reliability, means that
approximately one in five verdicts may be incorrect, a limitation that applies symmetrically
across all models tested. Future work could employ multiple judges to quantify inter-judge
agreement. Second, all curricula under test are currently undergoing multi-year revision
processes, the Australian Curriculum transitioned from Version 8 to Version 9, and New
Zealand is developing Te Mataiaho, meaning that LLMs trained on earlier versions may
produce answers that were once correct but are now outdated. Parametric knowledge of
superseded curriculum content may reduce rather than improve accuracy. Third, sample
sizes vary across curricula due to structural differences: the New Zealand Curriculum has
300 questions across only two categories, and the Western Australian Curriculum lacks
content recall questions entirely. This means cross-curriculum comparisons should be
interpreted with appropriate caution. Fourth, the benchmark tests only English-language
curriculum content; it does not evaluate knowledge of Te Marautanga o Aotearoa (the
Maori-medium NZ curriculum) or other language-specific frameworks. Fifth, while the
methodology is described in sufficient detail to enable independent replication, the
underlying structured curriculum database is not released due to copyright restrictions on
state curriculum content and the proprietary nature of the database. Researchers wishing to
reproduce this work must reconstruct structured representations from publicly available
curriculum documents, which may introduce variation in parsing and normalisation. Finally,
the benchmark evaluates curriculum knowledge at a single point in time; given the ongoing
nature of curriculum reform across all jurisdictions tested, results should be interpreted as a
snapshot rather than a permanent characterisation of model capabilities.

6. Future Work: Beyond Recall

The present benchmark establishes a foundation for evaluating LLM curriculum knowledge,
but recall is only the first step. In this section, we outline a research agenda for extending
evaluation to higher levels of Bloom’s Revised Taxonomy [16], moving from testing what
models remember to testing what they can do with curriculum knowledge.

6.1 Understand: Curriculum Comprehension

Tasks at the Understand level would assess whether models can interpret, explain, and
contextualise curriculum content. Example benchmark tasks include: explaining the rationale
for teaching a particular concept at a specific year level; summarising the learning
progression for a concept across multiple year levels (e.g., how the treatment of fractions
evolves from Year 1 to Year 7); classifying a set of outcomes by strand or sub-strand when
given only their descriptions; and interpreting the relationship between a content descriptor
and its associated elaborations.



These tasks require models to go beyond verbatim recall and demonstrate comprehension
of curriculum structure and intent. Evaluation would require rubric-based judging with expert
validation, since correct answers are less clearly defined than at the recall level.

6.2 Apply: Curriculum-Aligned Content Generation

Tasks at the Apply level would assess whether models can use curriculum knowledge to
produce pedagogically appropriate outputs. Example tasks include: generating an
assessment task (quiz, worksheet, or rubric) aligned to a specific content descriptor; creating
a lesson activity targeting a specified outcome at the correct difficulty level for the year
group; producing worked examples or model answers for a given outcome; and mapping a
given resource or activity to the most relevant curriculum outcomes.

Evaluation at this level is substantially more complex, requiring expert teacher judges to
assess both curriculum alignment and pedagogical quality. A hybrid evaluation approach
combining automated rubric checks (e.g., does the generated task reference the correct
outcome?) with human expert review of pedagogical appropriateness may be necessary.

6.3 Analyse: Cross-Curricular Connections

Tasks at the Analyse level would assess whether models can identify relationships, patterns,
and connections within and across curricula. Example tasks include: identifying outcomes
across different subjects that could be taught together in an integrated unit; comparing how a
topic (e.g., sustainability) is treated across different subjects and year levels; analysing the
prerequisite knowledge required for a given outcome; and detecting gaps or redundancies in
a proposed scope and sequence.

These tasks are particularly relevant for Australian teachers who must identify
cross-curricular integration opportunities.

6.4 Evaluate: Curriculum Alignment Judgement

Tasks at the Evaluate level would assess whether models can make informed judgements
about curriculum alignment. Example tasks include: reviewing a lesson plan and identifying
which curriculum outcomes it addresses (and which it claims but does not adequately
address); critiquing a set of assessment tasks for alignment with stated learning intentions;
evaluating whether a textbook chapter adequately covers the content descriptors for a given
subject and year level; and judging the appropriateness of a resource for a specific year
group.

This level of evaluation closely mirrors the expert judgements that curriculum coordinators
and instructional leaders make daily. Benchmark design would require curated sets of lesson
plans, assessment tasks, and resources with expert annotations of alignment quality.

6.5 Create: Curriculum Design and Planning

Tasks at the Create level, the highest in Bloom’s hierarchy, would assess whether models
can synthesise curriculum knowledge into novel, coherent outputs. Example tasks include:
designing a term-long scope and sequence for a given subject and year level; creating a
differentiated unit plan that addresses specified outcomes for diverse learners; producing a
whole-school curriculum map showing how general capabilities are developed across year



levels; and designing formative and summative assessment strategies for a learning
sequence.

Evaluation at this level would require substantial expert involvement, likely involving
practising teachers reviewing generated plans against professional standards. This
represents the most challenging and practically valuable extension of the current
benchmark.

6.6 Methodological Considerations

Moving up Bloom’s Taxonomy introduces significant methodological challenges. First,
higher-order tasks have less clearly defined correct answers, requiring more sophisticated
evaluation rubrics and likely human expert involvement. Second, task design must control for
the influence of general intelligence versus specific curriculum knowledge, a model might
produce a reasonable lesson plan through general pedagogical knowledge even without
accurate curriculum recall. Third, evaluation at higher levels is more expensive and less
scalable, necessitating smaller but more carefully designed benchmark sets. Fourth, the
relationship between recall performance and higher-order performance is an empirical
question: strong recall may be necessary but not sufficient, and the correlation between
Bloom’s levels merits investigation [18].

We suggest a phased approach: extending first to Understand (which can still be partially
automated), then to Apply and Analyse (requiring expert validation of generated rubrics), and
finally to Evaluate and Create (requiring substantial expert participation in both task design
and evaluation).

7. Conclusion

We have presented the first systematic benchmark of LLM curriculum knowledge for
Australian and New Zealand K-10 frameworks, evaluating seven frontier LLMs and one
retrieval-augmented system across approximately 13,500 question-response pairs spanning
four curricula and five categories of curriculum knowledge.

Our results reveal a striking knowledge deficit: no baseline LLM exceeds 41% overall pass
rate across all curricula, with code-specific knowledge (code-to-description, content recall)
near zero for most models, two of seven scored 0.0% on code-to-description. This is not a
failure of model capability but of training data representation: the same models that achieve
95% on US standardised tests cannot recall the basic building blocks of Australian and New
Zealand curriculum documents. The long-tail knowledge hypothesis [32] is strongly
supported, with cross-curriculum analysis confirming that state-specific curricula (Victorian,
Western Australian) are even less well represented than the national Australian Curriculum.

Retrieval augmentation, as demonstrated by CurricuLLM (88.7% overall), closes the gap
dramatically, outperforming the best baseline by 47.7 percentage points and achieving
98.4% on open-ended topical questions. CurricuLLM’s advantage is most pronounced on
precisely the structured queries most relevant to teacher workflows: code-to-description
(+76.5 pp) and description-to-code (+53.1 pp).

The error analysis reveals that outdated curriculum content is a persistent challenge,
compounded by the fact that all tested curricula are currently undergoing multi-year revision



processes. This makes retrieval over up-to-date, authoritative curriculum databases not
merely beneficial but essential for any Al tool supporting curriculum-aligned teaching.

Our benchmark contributes the first systematic evaluation of LLM curriculum knowledge for
Australian and New Zealand K-10 frameworks. By explicitly grounding our work in Bloom’s
Taxonomy, we provide both a useful baseline and a roadmap for more ambitious evaluation
of the pedagogical capabilities that teachers require from Al assistants. As Al tools become
increasingly embedded in educational practice, rigorous, curriculum-specific benchmarks will
be essential for ensuring these tools provide accurate, reliable, and educationally sound
support.
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